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LETTER TO THE EDITOR 

Thermal crossover effects resulting from dilution-induced 
magnon critical dynamics 

R B Stinchcombe and I R Pimentel 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 14 March 1988 

Abstract. The dynamics of magnons in Heisenberg magnets becomes anomalous when the 
magnet is diluted to concentrations p near the percolation threshold p c ,  where the percola- 
tion network becomes self-similar. The resulting crossover in dispersion relation and density 
of states from hydrodynamic to critical forms affects static thermal properties, such as 
magnetisation, influenced by excitation of magnons. It is shown that for low temperature 
T and Sp = ( p  - p c )  small the magnetisation of diluted ferromagnets is 

M ( P ,  7) = P ( P )  - &”‘f( SP ”‘Jl k ,  T )  

where P ( p )  a Sp8 is the percolation probability, v the percolation correlation length 
exponent, z the dynamic critical exponent, d the Euclidean dimensionality ( d  > 2) and I 
the exchange constant. The different asymptotic forms of the scaling function f ( y )  for 
y << 1 and y >> 1 imply a crossover in magnetisation decrease M ( p ,  0) - M ( p ,  T )  from 
standard Td” (hydrodynamic) behaviour (with non-trivial Sp-dependent coefficient 
because of mode softening) for T <  T * ( p )  to a form proportional to TSp”-“” for 
T >  T * ( p ) ,  where T * ( p )  is a crossover temperature proportional to Sp”’. This crossover 
is additional to the standard percolation-thermal crossover which is also present, e.g., in 
the form of the transition temperature T&p) ( a 6 p p ( z - d ) u + 8 )  resulting from M ( p ,  T , ( p ) )  = 0. 

Dynamical processes become critical on self-similar structures, e.g. random or non- 
random fractals (see, e.g., [ l ,  21). One of the most important real cases is in dilute- 
lattice-based systems, particularly dilute localised magnets at the percolation threshold 
[2,3]. This criticality in dynamics will have an effect on those static thermal properties 
related directly to the excitation of the ‘critical modes’, e.g. the thermal quantities such 
as magnetisation and specific heat resulting from excitation of spin waves. 

This letter will show that the hydrodynamic-to-critical crossover in the dynamics 
of Heisenberg spins on the percolation network causes a crossover in the magnetisation 
behaviour between two different power law dependences on temperature and concentra- 
tion (the powers involving Euclidean, fractal [4] and fracton [5] dimensions or related 
critical exponents, and the percolation correlation length exponent). This crossover 
is different from the usual percolation-thermal crossover [3], which is also present in 
the theory and evident in the resulting dependence of transition temperature on 
concentration, which is in agreement with the form obtained previously by static 
arguments [6,7]. 

In dilute magnets at concentrations p near the percolation threshold p c ,  the correla- 
tion length 6 diverges according to [3] 

( / a  - (P -Pd-” (1) 
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where a is the lattice constant. The divergence in 6 induces a crossover in the dynamics 
of spin waves [2] of wavevector k from hydrodynamic behaviour for k& < 1 to critical 
behaviour for k [ >  1. We consider the effects of this crossover on the magnetisation 
of site-diluted Heisenberg ferromagnets. 

The (spontaneous) magnetisation arises from spins on the infinite cluster which is 
present for p > p c .  At zero temperature ( T  = 0 ) ,  the spins in the infinite cluster are 
aligned so the magnetisation per site in a system of N sites is 

where P ( p )  is the percolation probability (the probability that an occupied site is part 
of the infinite cluster) and /3 is its associated critical exponent [8]. 

At low finite temperatures excitation of magnons reduces the magnetisation to [9] 

where n ( p ,  k )  = [exp(/3wk) - 13-’ is the number of excited spin waves with frequency 
wk on the (configurationally averaged) infinite cluster, and /3 = l /kBT.  k is the inverse 
characteristic length of the spin excitations (a wavelength in the hydrodynamic regime 
and a localisation length in the critical regime-see below). 

In the following we shall consider low temperatures (so that the ‘wavevectors’ 
occurring in (3) are small) and concentrations near p c  where, by ( l ) ,  6 is large. In 
this situation the dynamic scaling hypothesis [lo] applies and then the frequency wk 

and density of states have the following different forms in the hydrodynamic and 
critical regimes [2, 11-14]. 

(i)  Hydrodynamic regime (k6< 1 ) .  The dispersion relation is 

wk = Dk2 D = Do([/u)‘2-”. (4) 
The spin wave stiffness, 0, is reduced from its pure value (Do = Ja2, where J is 

the exchange constant) by the dependence on correlation length, which gives rise to 
mode softening as p + p c  (5 increasing) since z is greater than 2. z is the dynamic 
exponent characterising the dynamics in the critical regime (see (ii) below). (In the 
analogous case of anomalous diffusion [ 141 z would be the exponent normally written 
as (2+ e)). The number of magnons with wavevectors in the range k to k + d k  is 

( 5 )  
where d is the Euclidean dimension. 

(ii) Critical regime (&> 1) .  The dispersion relation now takes the critical form, 
with dynamic exponent z, where k is now the inverse characteristic length of the 
localised fracton modes [5, 151: 

wk = ck‘ c = Do(u/T)“-2’  ( 6 )  

p ( k )  ddk = N 0 ~ ( 2 7 r - ~  ddk 

and the number of fractons is 

p ( k )  ddrk = NP(p)adr(2~)-drddrk (7)  
where df is the fractal dimension of the infinite cluster, differing from the Euclidean 
dimension by the ‘anomalous dimension’ /3/ v (length scaling dimension) of P ( p ) :  

(8)  d f  = d - /3 / V. 
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The coefficients in (4) and (6) are related by the equivalence of the two forms in the 
crossover region k,$ - 1. Equations ( 5 )  and (7) count the modes on the infinite cluster: 
(5) arises from direct mode counting which applies in the hydrodynamic regime, while 
in (7)  the concentration-dependent factor is required to give the correct total number 
of modes up to a &independent cutoff (minimum length), the two forms connecting 
smoothly at the crossover [16]. 

The spin wave sum in (3 )  can now be split into the two parts corresponding to the 
sums over wavevectors less than and greater than 1/& i.e. to the contributions from 
hydrodynamic and critical regimes. The corresponding dispersion relations and 
densities of states can then be used to write the two sums as integrals with respect to 
k (from 0 to 1/5 and from 1/ (  to order r / a ,  respectively) of known functions of k 
Changing the integration variable from k to x = Pwk (which of course is related to k 
in a different way in the two integrals) leads to, using also (l), (2) and (8), 

In this expression 

y =  P J ( a / [ ) ' ,  c1 is a constant whose value will turn out to be irrelevant, and A = 
2 - ' ( 2 ~ ) - ~ ~ ~  and B = . Z - ' ( ~ T ) - ~ ~ A ~ ,  where Ad and Ad$ are the areas of d- and 
d,-dimensional unit hyperspheres, respectively. As is usual in spin wave calculations 
an integral (in this case I d / * )  becomes divergent for dimensionality d S 2. Our analysis 
therefore only applies for d > 2. Also, as could be expected, the spectral dimensionality 
[ 5 ]  d, = df/z appears in (9). 

Because the analysis is being carried out for low temperatures, the limit c , P J  can 
be replaced by infinity. The integrals are thus only functions of the variable y ,  and 
(9) takes the form 

in which y = P J ( a / [ ) '  plays the role of a crossover variable. As will be discussed 
subsequently this characterises a new crossover, induced by the dynamic crossover, 
which shows up in addition to the usual percolation-thermal crossover. By asymptotic 
evaluation of the integrals it is not difficult to show that 

The result for y << 1 involves contributions from both hydrodynamic and critical spin 
waves while that for y >> 1 comes entirely from the hydrodynamic regime. 

Before proceeding, we now estimate the transition temperature Tc(p)  by finding 
where the magnetisation vanishes ( M ( p ,  Tc (p ) )  = 0). Since in general ud > /3 this occurs 
where f ( y )  is large, i.e. for small y (using (12)) which leads to the phase boundary 

k , T c ( p ) / J  - ( p  -pc)('-d)"+P. (13) 
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Because of the Einstein relation [2, 131 the critical exponent 5 characterising the 
vanishing of the percolation conductivity at p c  satisfies 5 = (z - d ) v + P ;  the result (13) 
for the dependence of transition temperature on concentration near the threshold is 
therefore in agreement with that [6,7] obtained by purely static arguments, which yield 

The crossover between the two asymptotic behaviours in (12) occurs where y - 1 ,  
as the percolation-thermal crossover exponent. 

i.e. at the crossover line 

kB T / J  - ( p  - p c )  "*. (14) 

This is therefore a different crossover (dynamic in origin) from the usual percolation- 
thermal crossover involved in (13) .  Because dv > P, the new crossover is at a lower 
temperature than the critical temperature given by (13) ,  so the crossover line (14) 
occurs in the ordered region of the phase diagram (which is necessary for the crossover 
to actually occur). The phase diagram is illustrated in figure 1 .  The full curve represents 
the phase boundary (13) between the paramagnetic phase 1 and the ordered phase. 
The ordered phase is divided by the crossover curve (14), shown broken, into two 
regions, 2 and 3, in which the two different magnetisation behaviours resulting from 
inserting (12) into ( 1  1 )  occur. 

In region (2) ( y  < l ) ,  where both hydrodynamic and critical spin waves contribute, 

This expression vanishes at the critical line (13). A. is the dimensionless constant 

In region 3 ( y  > l ) ,  in which the magnetisation decrease is from only hydrodynamic 
A o = ( d / 2 -  l ) - ' A + ( l  - d r / ~ ) - ' B .  

spin waves, 

0 pc 1 
P 

Figure 1 .  Phase diagram of dilute Heisenberg ferromagnet at low temperature T and 
concentration p near percolation threshold p c .  The full curve is the phase boundary (13) 
dividing paramagnetic phase 1 and ferromagnetic phase. The broken crossover curve (14) 
divides the ferromagnetic phase into two regions, 2 and 3, in which the magnetisation 
behaviours (15 )  and (16) respectively apply. 
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The constant Bo is Bo = AZ,,,2(m, 0). In (16) the power of the temperature is the 
standard one [9], because the wavevector dependencies in (4) and (5) are not 
anomalous. However a non-trivial power of ( p - p c )  occurs, because of the mode 
softening. A further interesting effect is that the temperature and concentration 
exponents in (1 5) and (16), though different in general, become the same for dimension 
d approaching the lower critical dimension 2. Finally we note that the (unrenormalised) 
spin wave approach used here does not apply in the limit y + O  (when M becomes 
small) and therefore the linear vanishing of A4 at Tc(p)  implied by (15) is expected 
to be incorrect. 

In summary, it has been shown that the crossover from hydrodynamic to critical 
spin wave dynamics induced by the diverging correlation length near the percolation 
threshold causes a crossover in a static thermal property, the magnetisation. This 
crossover is in addition to the usual percolation-thermal crossover, which determines 
the transition temperature, which also results from the critical dynamics viewpoint. 
Further details of this work will be presented elsewhere, together with extensions to 
the antiferromagnetic case and to specific heat, etc. These extensions are non-trivial 
because of modified zero-point effects and finite cluster contributions respectively. 

IRP is grateful to the Calouste Gulbenkian Foundation for support in the form of a 
Research Studentship. 
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